3. Experiment with Replicas

Through this manual we analyze experiments with replicates and without replicates.

Example 1:

Study the effect on time of a given chemical reaction of varying the temperature and concentration of a reactant, as shown in the diagram below.

Variable Answer Y: Reaction time
Factors A: Concentration of Reagent (Levels $V_{-1}$=10% e $V_{+1}$=20%)
B: Temperature (levels $T_{-1}$=80ºC e $T_{+1}$=90ºC)
Treatment $V_{-1}$ $T_{-1}$ - concentration in 10% e temperature in 80ºC ((0)),$\quad$ &
$V_{+1}$ $T_{-1}$ - concentration in 20% e temperature in 80ºC (a),
$V_{-1}$ $T_{+1}$ - concentration in 10% e temperature in 90ºC (b)
$V_{+1}$ $T_{+1}$ - concentration in 20% e temperature in 90ºC (ab)
(The number of treatments is 2k, in this case $2^2$=4)
Experimental Unit Time period for each reaction
Replicas Repetition of the experiment done under the same conditions
experimental, in the case of the example under the same temperature
level and reagent. How much more replicas, more reliable the
results of the experiment.

a) Obtain estimates of the model parameters;
b) Make test of hypothesis to analyze the significance of the parameters.

Build a table as below:

Treatment A B Y
0 -1 -1 26.6
(a) 1 -1 40.9
(b) -1 1 11.8
(ab) 1 1 34
0 -1 -1 22
(a) 1 -1 36.4
(b) -1 1 15.9
(ab) 1 1 29
0 -1 -1 22.8
(a) 1 -1 36.7
(b) -1 1 14.3
(ab) 1 1 33.6

We will upload the data to the system.

Configure as shown in the figure below to realize the analysis.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are

ANOVA table

D.F. Sum of Squares Mean Square F Stat. P-value
A 1 787.32 787.320 0.894 0.367
B 1 182.52 182.520 0.207 0.659
Residuals 10 8808.72 880.872

Exploratory Analysis (residues)

Minimum 1Q Median Mean 3Q Maximum
23.8 24.725 26.65 27 29.275 30.8

Coefficients

Effects Estimate Standard Deviation T Stat. P-value
A 16.2 8.1 8.568 0.945 0.367
B -7.8 -3.9 8.568 -0.455 0.659

Descriptive measure for Goodness-of-Fit

Standard deviation of residuals Degrees of Freedom Adjusted R²
29.679 10 0.099 -0.081

Confidence interval for the parameters

2.5 % 97.5 %
A -10.99 27.19
B -22.99 15.19

Prediction Interval

Y A B Fitted Value Lower Limit Upper Limit Standard Deviation
1 26.6 -1 -1 -4.2 -31.197 22.797 12.117
2 40.9 1 -1 12 -14.997 38.997 12.117
3 11.8 -1 1 -12 -38.997 14.997 12.117
4 34 1 1 4.2 -22.797 31.197 12.117
5 22 -1 -1 -4.2 -31.197 22.797 12.117
6 36.4 1 -1 12 -14.997 38.997 12.117
7 15.9 -1 1 -12 -38.997 14.997 12.117
8 29 1 1 4.2 -22.797 31.197 12.117
9 22.8 -1 -1 -4.2 -31.197 22.797 12.117
10 36.7 1 -1 12 -14.997 38.997 12.117
11 14.3 -1 1 -12 -38.997 14.997 12.117
12 33.6 1 1 4.2 -22.797 31.197 12.117

Summary of Residual Analysis

N.Obs A B Residuals Studentized Resiaduals Standardized Residuals Leverage DFFITS DFBETA D-COOK
1 -1 -1 30.8 1.156 1.137 0.167 0.517 -0.365 0.129
2 1 -1 28.9 1.075 1.067 0.167 0.481 -0.34 0.114
3 -1 1 23.8 0.868 0.878 0.167 0.388 0.274 0.077
4 1 1 29.8 1.113 1.1 0.167 0.498 0.352 0.121
5 -1 -1 26.2 0.964 0.967 0.167 0.431 -0.305 0.094
6 1 -1 24.4 0.891 0.901 0.167 0.399 -0.282 0.081
7 -1 1 27.9 1.033 1.03 0.167 0.462 0.327 0.106
8 1 1 24.8 0.907 0.915 0.167 0.406 0.287 0.084
9 -1 -1 27 0.996 0.997 0.167 0.445 -0.315 0.099
10 1 -1 24.7 0.903 0.912 0.167 0.404 -0.286 0.083
11 -1 1 26.3 0.968 0.971 0.167 0.433 0.306 0.094
12 1 1 29.4 1.096 1.085 0.167 0.49 0.347 0.118

Criterion

Diagnostic Formula Value
hii (Leverage) (2*(p+1))/n 0.330
DFFITS 2* raíz ((p+1)/n) 0.820
DCOOK 4/n 0.333
DFBETA 2/raíz(n) 0.580
Standardized Resiaduals (-3,3) 3.000
Studentized Residuals (-3,3) 3.000

Normality Test

Statistics P-value
Anderson-Darling 0.290 0.549
Shapiro-Wilk 0.941 0.515
Kolmogorov-Smirnov 0.159 0.552
Ryan-Joiner 0.979 0.669

Homoscedasticity Test - Breusch Pagan

Statistics DF P-value
0 1 1

Homoscedasticity Test - Goldfeld Quandt

Variable Statistics DF1 DF2 P-value
A 0.543762619611975 3 2 0.602191866042602
B 0.538356274651855 3 2 0.597230105553078

Independence Test - Durbin-Watson

Statistics P-value
0.0143 0

Lack of Fit Test

DF Sum og square Mean Square F Stat. P-value
A 1 787.32 787.320 129.281 0.000
B 1 182.52 182.520 29.970 0.001
Residuals 10 8808.72 880.872
Lack of Fit 2 8760.00 4380.000 719.212 0.000
Pure Error 8 48.72 6.090

Analysis Result

Y A B
26.6 -1 -1
40.9 1 -1
11.8 -1 1
34.0 1 1
22.0 -1 -1
36.4 1 -1
15.9 -1 1
29.0 1 1
22.8 -1 -1
36.7 1 -1
14.3 -1 1
33.6 1 1

The value of 0.025;12−3−1=2.306 and thus we conclude that, with level α=5%, factors A and B are significant and the interaction AB is not significant. It is enough to see that the regression coefficients of A and B are respectively +1 and -1 and as we are interested in obtaining the smallest response (shortest reaction time), we choose levels A−B+.

With the results obtained, we can realize a graphical analysis on the system.

On the same page, you can construct a graph of the feasible region by choosing the upper and lower bound of the answer

Além disso, é possível construir o Gráfico de Otimização.

Example 2:

A certain chemical product is produced in a pressure vessel. With the objective of studying study which factors influence the filtration rate of the product (Y), a factorial experiment was carried out in which 4 factors were considered: A (temperature), B (pressure), C (formaldehyde concentration) and D (agitation speed). Each factor is observed at two levels.

Treatment A B C D Y
0 -1 -1 -1 -1 45
a 1 -1 -1 -1 71
b -1 1 -1 -1 48
ab 1 1 -1 -1 65
c -1 -1 1 -1 68
ac 1 -1 1 -1 60
bc -1 1 1 -1 80
abc 1 1 1 -1 65
d -1 -1 -1 1 43
ad 1 -1 -1 1 100
bd -1 1 -1 1 45
abd 1 1 -1 1 104
cd -1 -1 1 1 75
acd 1 -1 1 1 86
bcd -1 1 1 1 70
abcd 1 1 1 1 96

We will upload the data to the system.

Configure as shown in the figure below to realize the analysis.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are

Experiment Analysis without Replication

Effects Estimate Lower Limit Upper Limit t Statistic P-value
Intercepto 70.0625
A 21.6250 10.8125 14.8772 28.3728 8.2381 0.0004
B 3.1250 1.5625 -3.6228 9.8728 1.1905 0.2873
C 9.8750 4.9375 3.1272 16.6228 3.7619 0.0131
D 14.6250 7.3125 7.8772 21.3728 5.5714 0.0026
A:B 0.1250 0.0625 -6.6228 6.8728 0.0476 0.9639
A:C -18.1250 -9.0625 -24.8728 -11.3772 6.9048 0.0010
B:C 2.3750 1.1875 -4.3728 9.1228 0.9048 0.4071
A:D 16.6250 8.3125 9.8772 23.3728 6.3333 0.0014
B:D -0.3750 -0.1875 -7.1228 6.3728 0.1429 0.8920
C:D -1.1250 -0.5625 -7.8728 5.6228 0.4286 0.6861
A:B:C 1.8750 0.9375 -4.8728 8.6228 0.7143 0.5070
A:B:D 4.1250 2.0625 -2.6228 10.8728 1.5714 0.1769
A:C:D -1.6250 -0.8125 -8.3728 5.1228 0.6190 0.5630
B:C:D -2.6250 -1.3125 -9.3728 4.1228 1.0000 0.3632
A:B:C:D 1.3750 0.6875 -5.3728 8.1228 0.5238 0.6228

Experiment Analysis withou Replication

alpha PSE ME SME t.crit
0.0500 2.6250 6.7478 13.6990 2.5706

Experiment Analysis withou Replication

Module Effects Half-normal score
A 21.6250 2.1280
B 3.1250 0.7835
C 9.8750 1.0364
D 14.6250 1.1918
A:B 0.1250 0.0418
A:C 18.1250 1.6449
B:C 2.3750 0.5730
A:D 16.6250 1.3830
B:D 0.3750 0.1257
C:D 1.1250 0.2104
A:B:C 1.8750 0.4770
A:B:D 4.1250 0.9027
A:C:D 1.6250 0.3853
B:C:D 2.6250 0.6745
A:B:C:D 1.3750 0.2967

From the results and graphs obtained, we have that factors A, D, and the interactions A:C and A:D are significant.

Last modified 19.11.2025: Atualizar Manual (288ad71)