6. Multiple Response Experiments

“ACTION” provides this tool that allows you to carry out an Experiment with Multiple Variables and Multiple Responses, and you can create interactive graphs.

Example:

We will carry out the analysis with the following database:

x1 x2 y1 y2 y3
-1 -1 76.5 62 2940
-1 1 77.0 60 3470
1 -1 78.0 66 3680
1 1 79.5 59 3890
0 0 79.9 72 3480
0 0 80.3 69 3200
0 0 80.0 68 3410
0 0 79.7 70 3290
0 0 79.8 71 3500
1414 0 78.4 68 3360
-1414 0 75.6 71 3020
0 1414 78.5 58 3630
0 -1414 77.0 57 3150

We will upload the data to the system.

To realize the analysis, simply access DOE and select the options as shown in the figure below.

Clicking on Calculate, we can see the results in the “Models” tab And download the results in Word format.

Clicking on the “Desirability” menu shows the best solution along with the heat map.

The results are

Manova Table

D.F. Stat. Wilks Stat. F D.F. Numerator D.F. Denominator P-value
x1 1 0.7872343 0.7207196 3 8 0.5671869
x2 1 0.8440357 0.4927573 3 8 0.6971357
Residuals 10

Model for y1: Anova Table

D.F. Sum of Squares Medium Square Stat. F P-value
x1 1 3.927921 3.927921 1.6581877 0.2268496
x2 1 1.127122 1.127122 0.4758189 0.5060141
Residuals 10 23.688035 2.368803

Model for y1: Table of Coefficient

Estimate Deviation.Standard T. Stat. P-value 2.5 % 97.5%
Intercept 78.4769 0.4269 183.8439 0 77.5258 79.428
x1 0.001 0.0008 1.2877 0.2268 -0.0007 0.0027
x2 0.0005 0.0008 0.6898 0.506 -0.0012 0.0022

Model for y1: Descriptive Measure of Fit Quality

Standard Deviation of residuals Degrees of Freedom Adjusted R²
1.539092 10 0.175869 0.01104389

Model for y2: Anova Table

D.F. Sum of Squares Mean Square F.Stat. P-value
x1 1 4.4936328 4.4936328 0.12613937 0.7298457
x2 1 0.4936548 0.4936548 0.01385723 0.9086230
Residuals 10 356.2434816 35.6243482

Model for y2: Table Coefficient

Estimate Deviation.Standard t. Stat. P-value 2.5% 97.5%
Intercept 65.4615 1.6554 39.5443 0 61.7731 69.15
x1 -0.0011 0.003 -0.3552 0.7298 -0.0077 0.0056
x2 0.0004 0.003 0.1177 0.90861 -0.0063 0.007

Model for y2: Descriptive Measure of Fit Quality

Standard Deviation of residuals Degrees of Freedom $R^2$ Adjusted $R^2$
5.968614 10 0.0138063 -0.1834323

Model for y3: Anova Table

D.F. Sum of Squares Mean Square F Stat. P-value
x1 1 58079.2034 58079.2034 0.843 0.3802
x2 1 115451.2237 115451.2237 1.6757 0.2246
Residuals 10 688977.2651 68897.7265

Model for y3: Table Coefficient

Estimate Standard Deviation T Stat. P.value 2.5% 97.5%
Intercept 3386.1538 72.7999 46.5132 0 3223.9456 3548.3621
x1 0.1205 0.1313 0.9181 0.3802 -0.172 0.413
x2 0.1699 0.1313 1.2945 0.2246 -0.1226 0.4624

Model for y3: Descriptive Measure of Fit Quality

Standard Deviation of Residuals Degrees of Freedom $R^2$ Adjusted $R^2$ Adjusted
262.4838 10 0.201192 0.04143148

En la ventana “Deseabilidad” It shows which is the best solution together with the heat map.


The best solution
x1 x2 D y1 Predicted y2 Predicted y3 Predicted
-1.682 -1.682 0.3717 78.4744 65.4627 3385.6653

Profile Chart

x1 x2 D y1 Predicted y2 Predicted y3 Predicted
-1.68 -1.68 0.37 78.47 65.46 3385.673

Heat map

Some solutions

x1 x2 D y1 Predicted y2 Predicted y3 Predicted
0 0 0.3676 78.4769 65.4615 3386.1538

Last modified 19.11.2025: Atualizar Manual (288ad71)