1. ID Plot

“ACTION” provides the ID-Plot tool allows you to determine which distribution best describes the randomness of a data set: Normal, Log-Normal, Exponential, Logistic, Gamma, Weibull e Gumbel. This tool allows you to choose between the QQPlot, Histogram, and Density Function graphs, as well as the Anderson-Darling, Cramer-von-Misses, and Kolmogorov-Smirnov hypothesis tests.

Example:

Consider the data set in the table below. Let’s see which probability distribution best describes this set of data.

Measurements
0.20
0.16
0.24
0.56
0.34
0.33
0.35
0.20
0.28
0.81
0.30
1.19
0.46
0.12
0.50
0.46
0.69
0.11
0.32
0.28
0.57
0.42
0.91
0.79
0.51
0.67
0.70
0.19
0.22
0.62
0.56
0.96
0.11
0.85
0.37
0.80
0.52
0.17
0.58
0.15
0.20
0.05
0.63
0.53
0.60
0.21
0.29
0.41
0.43
0.75

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Analysis result

Box-Cox Transformation

Results

Valuess
Lambda 0.429
P-Value (Anderson-Darling) 0.703

Analysis result

Johnson TRAMSFORMATON

Estimates

test
Gamma 0.90802942754439
Lambda 1.36936290670753
Epsilon 0.0168457063069285
Eta 0.951739827664239
Família SB
P-Value (Anderson-Darling) 0.9422

Anderson-Darling

Distributions Statistics P-Value
1 Normal($\mu$ = 0.45, $\sigma$ = 0.26) 0.566 0.136
2 Log-Normal(log($\mu$) = -0.982398, log($\sigma$)= 0.667801) 0.589 0.118
1-mle-exp Exponentiall(Rate = 2.20556) 3.845 0.000
11 Logistica(Location = 0.44, Scale = 0.15) 0.581 0.089
12 Gamma(Shape = 2.76743, Rate = 6.10372) 0.295 0.250
13 Weibull(Shape = 1.84755, Scale = 0.511436) 0.217 0.250
14 Gumbel(Location = 0.332819, Scale = 0.207431) 0.384 0.250

Cramer-von-Misés

Distributionss Statistics P-Value
Normal($\mu$ = 0.45, $\sigma$ = 0.26) 0.082 0.192
Log-Normal(log($\mu$) = -0.982398, log($\sigma$) = 0.667801) 0.100 0.114
Exponential(Rate = 2.20556) 0.678 0.000
Logística(Location = 0.44, Scale = 0.15) 0.076 0.232
Gamma(Shape = 2.76743, Rate = 6.10372) 0.051 0.497
Weibull(Shape = 1.84755, Scale = 0.511436) 0.035 0.765
Gumbel(Location = 0.332819, Scale = 0.207431) 0.065 0.329

Kolmogorov-Smirnov

Distributions Statistics P-Value
Normal($\mu$ = 0.45, $\sigma$ = 0.26) 0.095 0.313
Log-Normal(log($\mu$) = -0.982398, log($\sigma$) = 0.667801) 0.108 0.158
Exponential(Rate = 2.20556) 0.202 0.000
Logistica(Location = 0.44, Scale = 0.15) 0.082 0.550
Gamma (Shape = 2.76743, Rate = 6.10372) 0.083 0.534
Weibull (Shape = 1.84755, Scale = 0.511436) 0.070 0.778
Gumbel(Location = 0.332819, Scale = 0.207431) 0.081 0.559

Analysis result

Graphical analysis

Last modified 19.11.2025: Atualizar Manual (288ad71)