1. ID Plot
“ACTION” provides the ID-Plot tool allows you to determine which distribution best describes the randomness of a data set: Normal, Log-Normal, Exponential, Logistic, Gamma, Weibull e Gumbel. This tool allows you to choose between the QQPlot, Histogram, and Density Function graphs, as well as the Anderson-Darling, Cramer-von-Misses, and Kolmogorov-Smirnov hypothesis tests.
Example:
Consider the data set in the table below. Let’s see which probability distribution best describes this set of data.
| Measurements |
|---|
| 0.20 |
| 0.16 |
| 0.24 |
| 0.56 |
| 0.34 |
| 0.33 |
| 0.35 |
| 0.20 |
| 0.28 |
| 0.81 |
| 0.30 |
| 1.19 |
| 0.46 |
| 0.12 |
| 0.50 |
| 0.46 |
| 0.69 |
| 0.11 |
| 0.32 |
| 0.28 |
| 0.57 |
| 0.42 |
| 0.91 |
| 0.79 |
| 0.51 |
| 0.67 |
| 0.70 |
| 0.19 |
| 0.22 |
| 0.62 |
| 0.56 |
| 0.96 |
| 0.11 |
| 0.85 |
| 0.37 |
| 0.80 |
| 0.52 |
| 0.17 |
| 0.58 |
| 0.15 |
| 0.20 |
| 0.05 |
| 0.63 |
| 0.53 |
| 0.60 |
| 0.21 |
| 0.29 |
| 0.41 |
| 0.43 |
| 0.75 |
We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:
Analysis result
| Box-Cox Transformation |
Results
| Valuess | |
|---|---|
| Lambda | 0.429 |
| P-Value (Anderson-Darling) | 0.703 |
Analysis result
| Johnson TRAMSFORMATON |
Estimates
| test | |
|---|---|
| Gamma | 0.90802942754439 |
| Lambda | 1.36936290670753 |
| Epsilon | 0.0168457063069285 |
| Eta | 0.951739827664239 |
| Família | SB |
| P-Value (Anderson-Darling) | 0.9422 |
Anderson-Darling
| Distributions | Statistics | P-Value | |
|---|---|---|---|
| 1 | Normal($\mu$ = 0.45, $\sigma$ = 0.26) | 0.566 | 0.136 |
| 2 | Log-Normal(log($\mu$) = -0.982398, log($\sigma$)= 0.667801) | 0.589 | 0.118 |
| 1-mle-exp | Exponentiall(Rate = 2.20556) | 3.845 | 0.000 |
| 11 | Logistica(Location = 0.44, Scale = 0.15) | 0.581 | 0.089 |
| 12 | Gamma(Shape = 2.76743, Rate = 6.10372) | 0.295 | 0.250 |
| 13 | Weibull(Shape = 1.84755, Scale = 0.511436) 0.217 | 0.250 | |
| 14 | Gumbel(Location = 0.332819, Scale = 0.207431) | 0.384 | 0.250 |
Cramer-von-Misés
| Distributionss | Statistics | P-Value |
|---|---|---|
| Normal($\mu$ = 0.45, $\sigma$ = 0.26) | 0.082 | 0.192 |
| Log-Normal(log($\mu$) = -0.982398, log($\sigma$) = 0.667801) | 0.100 | 0.114 |
| Exponential(Rate = 2.20556) | 0.678 | 0.000 |
| Logística(Location = 0.44, Scale = 0.15) | 0.076 | 0.232 |
| Gamma(Shape = 2.76743, Rate = 6.10372) | 0.051 | 0.497 |
| Weibull(Shape = 1.84755, Scale = 0.511436) | 0.035 | 0.765 |
| Gumbel(Location = 0.332819, Scale = 0.207431) | 0.065 | 0.329 |
Kolmogorov-Smirnov
| Distributions | Statistics | P-Value |
|---|---|---|
| Normal($\mu$ = 0.45, $\sigma$ = 0.26) | 0.095 | 0.313 |
| Log-Normal(log($\mu$) = -0.982398, log($\sigma$) = 0.667801) | 0.108 | 0.158 |
| Exponential(Rate = 2.20556) | 0.202 | 0.000 |
| Logistica(Location = 0.44, Scale = 0.15) | 0.082 | 0.550 |
| Gamma (Shape = 2.76743, Rate = 6.10372) | 0.083 | 0.534 |
| Weibull (Shape = 1.84755, Scale = 0.511436) | 0.070 | 0.778 |
| Gumbel(Location = 0.332819, Scale = 0.207431) | 0.081 | 0.559 |
Analysis result
| Graphical analysis | ||






Last modified 19.11.2025: Atualizar Manual (288ad71)