4. Performance Indices - Pp (Discrete Data)

In some applications, we are interested in evaluating the capacity of a process in which we only observe whether the product is within or outside specifications, that is, the data collected is of a discrete nature.

Example 1:

An industry is interested in analyzing the capacity of a process in which the number of non-conforming points on a steel blade is checked, each blade measuring 50 $\text{cm}^2$ . The data is shown in the following table

Sample No non conforming Sample size cm2
1 2 50
2 4 50
3 3 50
4 1 50
5 2 50
6 5 50
7 2 50
8 5 50
9 4 50
10 1 50
11 6 50
12 3 50
13 3 50
14 6 50
15 1 50
16 4 50
17 1 50
18 8 50
19 1 50
20 4 50
21 4 50
22 2 50
23 4 50
24 2 50
25 1 50
26 2 50
27 2 50
28 3 50
29 4 50
30 4 50

We will upload the data to the system.

Setting as shown in the figure below to perform the analysis

  • In “select tests” we can choose the tests we want to carry out.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are:

Defect mean:

V1
Target % (Optional) 0.000
Defect Mean: 3.133
Lower Limit: 2.532
Upper Limit: 3.834

DPU Mean:

V1
DPU Mean: 0.063
Lower Limit: 0.051
Upper Limit: 0.077
Minimum: 0.020
Maximum: 0.160

Confidence Intervals (PPM)

V1
PPM’s Mean: 60743.49
Lower Limit: 49380.16
Upper Limit: 73821.34

Analysis result

Defect Sample size Percentage of defect accumulated defect Accumalated total Accumulated percentagem
2 50 0.04 2 50 0.04
4 50 0.08 6 100 0.06
3 50 0.06 9 150 0.06
1 50 0.02 10 200 0.05
2 50 0.04 12 250 0.048
5 50 0.1 17 300 0.057
2 50 0.04 19 350 0.054
5 50 0.1 24 400 0.06
4 50 0.08 28 450 0.062
1 50 0.02 29 500 0.058
6 50 0.12 35 550 0.064
3 50 0.06 38 600 0.063
3 50 0.06 41 650 0.063
6 50 0.12 47 700 0.067
1 50 0.02 48 750 0.064
4 50 0.08 52 800 0.065
1 50 0.02 53 850 0.062
8 50 0.16 61 900 0.068
1 50 0.02 62 950 0.065
4 50 0.08 66 1.000 0.066
4 50 0.08 70 1.050 0.067
2 50 0.04 72 1.100 0.065
4 50 0.08 76 1.150 0.066
2 50 0.04 78 1.200 0.065
1 50 0.02 79 1.250 0.063
2 50 0.04 81 1.300 0.062
2 50 0.04 83 1.350 0.061
3 50 0.06 86 1.400 0.061
4 50 0.08 90 1.450 0.062
4 50 0.08 94 1.500 0.063

Example 2:

An industry is interested in analyzing the capacity of a pieces process in which the proportion of defective in lots of 1000 pieces is checked. The data is shown in the table below.

Sample Defective pieces Total pieces in the sample
1 432 1000
2 392 1000
3 497 1000
4 459 1000
5 433 1000
6 424 1000
7 470 1000
8 455 1000
9 427 1000
10 424 1000
11 410 1000
12 386 1000
13 496 1000
14 424 1000
15 425 1000
16 428 1000
17 392 1000
18 460 1000
19 425 1000
20 405 1000

We will upload the data to the system.

Setting as shown in the figure below to perform the analysis

  • In “select tests” we can choose the tests we want to carry out.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are

Defect percentage:

V1
Target % (Optional) 0.000
Defect percentage: 43.320
Lower Limit: 42.632
Upper Limit: 44.010

Defect Rate:

V1
Defect rate: 0.4332
Lower Limit: 0.4263
Upper Limit: 0.4401

ICP

V1
ICP 0.168
Lower Limit: 0.186
Upper Limit: 0.151

Results analysis

Defect Sample size percentage of defect Accumulated defect Accumulated total Accumulated percentage
432 1000 0.432 432 1000 0.432
392 1000 0.392 824 2000 0.412
497 1000 0.497 1321 3000 0.44
459 1000 0.459 1780 4000 0.445
433 1000 0.433 2213 5000 0.443
424 1000 0.424 2637 6000 0.44
470 1000 0.47 3107 7000 0.444
455 1000 0.455 3562 8000 0.445
427 1000 0.427 3989 9000 0.443
424 1000 0.424 4413 10000 0.441
410 1000 0.41 4823 11000 0.438
386 1000 0.386 5209 12000 0.434
496 1000 0.496 5705 13000 0.439
424 1000 0.424 6129 14000 0.438
425 1000 0.425 6554 15000 0.437
428 1000 0.428 6982 16000 0.436
392 1000 0.392 7374 17000 0.434
460 1000 0.46 7834 18000 0.435
425 1000 0.425 8259 19000 0.435
405 1000 0.405 8664 20000 0.433

Last modified 19.11.2025: Atualizar Manual (288ad71)