5. Graphics for Small Lots

To attaining process efficiencies for small lots. it is essential that SPC methods can verify that the process is truly under statistical control. i.e. that it is predictable and can detect variations due to special causes during these small “lots”.

Example 1:

In the rough machining of external diameters (shafts) on a lathe. 25 samples were taken. each consisting of 3 pieces. obtaining the values ​​in the table below.

Sample N Pieces P1 P2 P3
1 220 1 219.7838 220.0287 220.0922
2 220 1 219.9046 220.1229 220.2368
3 220 1 219.8345 220.0862 219.9268
4 220 1 219.7302 220.001 220.0357
5 220 1 220.1644 220.3151 219.9806
6 260 2 259.8635 260.1847 259.867
7 260 2 259.7917 259.9042 259.908
8 260 2 259.8264 259.8535 259.6465
9 260 2 259.6421 260.0869 259.9488
10 260 2 259.8945 260.0154 260.3685
11 320 3 319.7366 319.5236 319.7053
12 320 3 319.8834 319.415 319.8163
13 320 3 320.2431 320.1935 319.9893
14 320 3 319.9805 320.0828 320.0418
15 320 3 320.4944 320.4552 320.0477
16 240 4 239.8076 239.7787 240.2064
17 240 4 240.1663 240.1888 240.2023
18 240 4 240.1662 240.1382 240.1141
19 240 4 240.017 239.9212 240.0397
20 240 4 240.2081 240.0484 239.9119
21 300 5 300.0479 300.1325 299.9955
22 300 5 300.2815 299.9451 300.0365
23 300 5 299.7173 300.383 300.4608
24 300 5 300.0009 300.0487 300.0038
25 300 5 299.5822 300.4351 299.7919

We will upload the data to the system.

Configure as shown in the figure below to perform the graphical analysis.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are:

Limits - Xbar

Limits
Upper Limit 0.318
Center line 0.006
Lower Limit -0.306

Limits - R

Limits
Standard Deviation 0.180
Upper Limit 0.785
Center line 0.305
Lower Limit 0.000

Example 2:

In the rough machining of external diameters (shafts) on a lathe. 25 samples were taken. each consisting of 3 pieces. obtaining the values ​​in the table below.

Sample N Piece P1 P2 P3
1 220 1 219.7838 220.0287 220.0922
2 220 1 219.9046 220.1229 220.2368
3 220 1 219.8345 220.0862 219.9268
4 220 1 219.7302 220.001 220.0357
5 220 1 220.1644 220.3151 219.9806
6 260 2 259.8635 260.1847 259.867
7 260 2 259.7917 259.9042 259.908
8 260 2 259.8264 259.8535 259.6465
9 260 2 259.6421 260.0869 259.9488
10 260 2 259.8945 260.0154 260.3685
11 320 3 319.7366 319.5236 319.7053
12 320 3 319.8834 319.415 319.8163
13 320 3 320.2431 320.1935 319.9893
14 320 3 319.9805 320.0828 320.0418
15 320 3 320.4944 320.4552 320.0477
16 240 4 239.8076 239.7787 240.2064
17 240 4 240.1663 240.1888 240.2023
18 240 4 240.1662 240.1382 240.1141
19 240 4 240.017 239.9212 240.0397
20 240 4 240.2081 240.0484 239.9119
21 300 5 300.0479 300.1325 299.9955
22 300 5 300.2815 299.9451 300.0365
23 300 5 299.7173 300.383 300.4608
24 300 5 300.0009 300.0487 300.0038
25 300 5 299.5822 300.4351 299.7919

We will upload the data to the system.

Configure as shown in the figure below to perform the graphical analysis.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are:

Estimates by part

Parts Standardized mean Standardized Range Estimates of standard deviation
1 220.016 0.306 0.181
2 259.920 0.313 0.185
3 319.974 0.297 0.175
4 240.061 0.186 0.110
5 300.058 0.424 0.250

Standardization by sample

Parts Standardized Mean Standardized Range
1 1 -0.459 0.012
2 1 0.687 0.16
3 1 -0.642 -0.341
4 1 -0.899 -0.006
5 1 1.312 0.174
6 2 0.484 0.052
7 2 -0.489 -1.197
8 2 -1.356 -0.644
9 2 -0.258 0.806
10 2 1.619 0.984
11 3 -3.148 -0.538
12 3 -2.657 1.102
13 3 1.66 -0.276
14 3 0.604 -1.249
15 3 3.541 0.962
16 4 -2.049 2.474
17 4 1.966 -1.537
18 4 1.237 -1.372
19 4 -1.077 -0.692
20 4 -0.077 1.128
21 5 0.008 -1.289
22 5 0.209 -0.392
23 5 0.897 1.44
24 5 -0.275 -1.691
25 5 -0.838 1.932

Last modified 19.11.2025: Atualizar Manual (288ad71)