4. Sample Size

The ability of control charts to detect shifts in process quality is described by their operating characteristic curves (OHC), and from the curve it is possible to determine sample sizes.

Example 1:

Configure as shown in the figure below to Use the Sample size tool.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are:

OC curves for x-bar graph

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 0.989 0.944 0.81 0.568 0.296 0.107 0.026 0.004 0 0 0 0
n = 3 0.984 0.898 0.656 0.321 0.092 0.014 0.001 0 0 0 0 0
n = 4 0.977 0.841 0.5 0.159 0.023 0.001 0 0 0 0 0 0
n = 5 0.97 0.778 0.362 0.07 0.005 0 0 0 0 0 0 0
n = 6 0.962 0.709 0.25 0.029 0.001 0 0 0 0 0 0 0
n = 7 0.953 0.638 0.166 0.011 0 0 0 0 0 0 0 0
n = 8 0.944 0.568 0.107 0.004 0 0 0 0 0 0 0 0
n = 9 0.933 0.5 0.067 0.001 0 0 0 0 0 0 0 0
n =10 0.922 0.436 0.041 0 0 0 0 0 0 0 0 0

OC curves for standard deviation chart

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 1 0.991 0.918 0.807 0.703 0.615 0.544 0.485 0.438 0.398 0.364 0.336
n = 3 1 0.994 0.9 0.726 0.563 0.438 0.345 0.277 0.226 0.187 0.157 0.134
n = 4 1 0.996 0.879 0.648 0.447 0.307 0.215 0.155 0.114 0.086 0.067 0.052
n = 5 1 0.996 0.856 0.574 0.35 0.212 0.132 0.085 0.056 0.039 0.027 0.02
n = 6 1 0.996 0.833 0.506 0.271 0.144 0.079 0.046 0.027 0.017 0.011 0.007
n = 7 0.999 0.997 0.808 0.442 0.208 0.097 0.047 0.024 0.013 0.007 0.004 0.003
n = 8 0.996 0.997 0.784 0.385 0.158 0.065 0.028 0.013 0.006 0.003 0.002 0.001
n = 9 0.988 0.997 0.759 0.333 0.119 0.043 0.016 0.007 0.003 0.001 0.001 0
n =10 0.973 0.997 0.734 0.287 0.089 0.028 0.009 0.003 0.001 0.001 0 0

Average run length

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 90.646 17.731 5.269 2.315 1.421 1.12 1.026 1.004 1 1 1 1
n = 3 60.688 9.765 2.908 1.473 1.101 1.014 1.001 1 1 1 1 1
n = 4 43.895 6.303 2 1.189 1.023 1.001 1 1 1 1 1 1
n = 5 33.401 4.495 1.566 1.076 1.005 1 1 1 1 1 1 1
n = 6 26.358 3.437 1.333 1.03 1.001 1 1 1 1 1 1 1
n = 7 21.383 2.766 1.2 1.011 1 1 1 1 1 1 1 1
n = 8 17.731 2.315 1.12 1.004 1 1 1 1 1 1 1 1
n = 9 14.968 2 1.072 1.001 1 1 1 1 1 1 1 1
n =10 12.825 1.772 1.042 1 1 1 1 1 1 1 1 1

Expected individual units

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 181.292 35.462 10.538 4.631 2.841 2.24 2.053 2.008 2.001 2 2 2
n = 3 182.064 29.294 8.724 4.42 3.303 3.043 3.003 3 3 3 3 3
n = 4 175.579 25.212 8 4.754 4.093 4.005 4 4 4 4 4 4
n = 5 167.004 22.477 7.832 5.379 5.024 5.001 5 5 5 5 5 5
n = 6 158.145 20.62 8.001 6.178 6.005 6 6 6 6 6 6 6
n = 7 149.679 19.36 8.397 7.078 7.001 7 7 7 7 7 7 7
n = 8 141.847 18.523 8.959 8.032 8 8 8 8 8 8 8 8
n = 9 134.709 18 9.644 9.012 9 9 9 9 9 9 9 9
n =10 128.251 17.716 10.424 10.004 10 10 10 10 10 10 10 10

Example 2:

Configure as shown in the figure below to Use the Sample size tool.

Then click Calculate we obtain the results. You can also generate the analyses and download them in Word format.

The results are:

OC curves for x-bar graph

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 0.989 0.944 0.81 0.568 0.296 0.107 0.026 0.004 0 0 0 0
n = 3 0.984 0.898 0.656 0.321 0.092 0.014 0.001 0 0 0 0 0
n = 4 0.977 0.841 0.5 0.159 0.023 0.001 0 0 0 0 0 0
n = 5 0.97 0.778 0.362 0.07 0.005 0 0 0 0 0 0 0
n = 6 0.962 0.709 0.25 0.029 0.001 0 0 0 0 0 0 0
n = 7 0.953 0.638 0.166 0.011 0 0 0 0 0 0 0 0
n = 8 0.944 0.568 0.107 0.004 0 0 0 0 0 0 0 0
n = 9 0.933 0.5 0.067 0.001 0 0 0 0 0 0 0 0
n =10 0.922 0.436 0.041 0 0 0 0 0 0 0 0 0

OC curves for R chart

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 1 0.991 0.918 0.807 0.704 0.615 0.544 0.485 0.437 0.399 0.365 0.336
n = 3 1 0.994 0.9 0.728 0.566 0.44 0.346 0.278 0.228 0.189 0.159 0.135
n = 4 1 0.995 0.881 0.656 0.456 0.315 0.222 0.16 0.119 0.089 0.069 0.054
n = 5 1 0.995 0.861 0.59 0.367 0.225 0.141 0.092 0.061 0.042 0.03 0.022
n = 6 1 0.996 0.842 0.531 0.295 0.162 0.09 0.053 0.032 0.02 0.013 0.009
n = 7 1 0.996 0.823 0.478 0.239 0.115 0.058 0.031 0.017 0.01 0.006 0.004
n = 8 0.999 0.996 0.805 0.433 0.193 0.084 0.037 0.018 0.009 0.005 0.003 0.001
n = 9 0.998 0.996 0.788 0.391 0.157 0.06 0.024 0.01 0.005 0.002 0.001 0.001
n=10 0.994 0.996 0.772 0.354 0.127 0.044 0.015 0.006 0.002 0.001 0.001 0

Average run length

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 90.646 17.731 5.269 2.315 1.421 1.12 1.026 1.004 1 1 1 1
n = 3 60.688 9.765 2.908 1.473 1.101 1.014 1.001 1 1 1 1 1
n = 4 43.895 6.303 2 1.189 1.023 1.001 1 1 1 1 1 1
n = 5 33.401 4.495 1.566 1.076 1.005 1 1 1 1 1 1 1
n = 6 26.358 3.437 1.333 1.03 1.001 1 1 1 1 1 1 1
n = 7 21.383 2.766 1.2 1.011 1 1 1 1 1 1 1 1
n = 8 17.731 2.315 1.12 1.004 1 1 1 1 1 1 1 1
n = 9 14.968 2 1.072 1.001 1 1 1 1 1 1 1 1
n =10 12.825 1.772 1.042 1 1 1 1 1 1 1 1 1

Expected individual units

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
n = 2 181.292 35.462 10.538 4.631 2.841 2.24 2.053 2.008 2.001 2 2 2
n = 3 182.064 29.294 8.724 4.42 3.303 3.043 3.003 3 3 3 3 3
n = 4 175.579 25.212 8 4.754 4.093 4.005 4 4 4 4 4 4
n = 5 167.004 22.477 7.832 5.379 5.024 5.001 5 5 5 5 5 5
n = 6 158.145 20.62 8.001 6.178 6.005 6 6 6 6 6 6 6
n = 7 149.679 19.36 8.397 7.078 7.001 7 7 7 7 7 7 7
n = 8 141.847 18.523 8.959 8.032 8 8 8 8 8 8 8 8
n = 9 134.709 18 9.644 9.012 9 9 9 9 9 9 9 9
n =10 128.251 17.716 10.424 10.004 10 10 10 10 10 10 10 10

Last modified 19.11.2025: Atualizar Manual (288ad71)