3. Repeatability and Reproducibility

Repeatability and reproducibility is the sum of the variations due to the lack of repeatability and reproducibility. They can be used to estimate the variability associated with the measurement system.

Example 1:

Consider a measuring system for measuring the internal diameter of a bearing. The quality engineer carried out an experiment with 10 parts, 3 operators and 3 repetitions for each operator and part. he data referring to this experiment is set out in the .CSV file

Measurement Parts Operator
114.958 1 1
114.957 2 1
114.962 3 1
114.963 4 1
114.965 5 1
114.963 6 1
114.967 7 1
114.963 8 1
114.953 9 1
114.967 10 1
114.957 1 1
114.958 2 1
114.962 3 1
114.963 4 1
114.965 5 1
114.962 6 1
114.967 7 1
114.968 8 1
114.952 9 1
114.967 10 1
114.958 1 1
114.958 2 1
114.953 3 1
114.965 4 1
114.967 5 1
114.962 6 1
114.967 7 1
114.968 8 1
114.953 9 1
114.966 10 1
114.962 1 2
114.956 2 2
114.963 3 2
114.965 4 2
114.966 5 2
114.965 6 2
114.969 7 2
114.97 8 2
114.955 9 2
114.965 10 2
114.961 1 2
114.957 2 2
114.963 3 2
114.966 4 2
114.967 5 2
114.963 6 2
114.97 7 2
114.968 8 2
114.955 9 2
114.964 10 2
114.961 1 2
114.96 2 2
114.963 3 2
114.966 4 2
114.968 5 2
114.965 6 2
114.968 7 2
114.969 8 2
114.953 9 2
114.965 10 2
114.958 1 3
114.96 2 3
114.965 3 3
114.966 4 3
114.967 5 3
114.964 6 3
114.97 7 3
114.97 8 3
114.955 9 3
114.966 10 3
114.958 1 3
114.959 2 3
114.965 3 3
114.965 4 3
114.966 5 3
114.965 6 3
114.97 7 3
114.97 8 3
114.954 9 3
114.966 10 3
114.958 1 3
114.958 2 3
114.964 3 3
114.965 4 3
114.966 5 3
114.965 6 3
114.969 7 3
114.971 8 3
114.955 9 3
114.967 10 3

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

ANOVA TABLE

D.F. Sum of the squares Mean Squares F Statistics P-Value
Parts 9 0.001879 0.000209 49.334403 0.000
Operators 2 0.000072 0.000036 8.543041 0.0024
Interaction 18 0.000076 0.000004 2.33606 0.0074
Repeatability 60 0.000109 0.000002

CONTRIBUTION TABLE

Variances Contribution (%)
Repeatability 0 6.859
Reproducibility 0 7.084
Operators 0 4.029
Interaction 0 3.055
Partss 0 86.057
Repeatability and Reproducibility 0 13.943
Total 0 100.000

TOTAL VARIANCE AND/OR TOLERANCE

Standard Deviation Total Variation (%)
Repeatability 0.001 26.190
Reproducibility 0.001 26.616
Operators 0.001 20.072
Interaction 0.001 17.478
Parts 0.005 92.767
Repeatability and reproducibility 0.002 37.341
Total 0.005 100.000
Analysis result
$\qquad \quad$ NDC: 3

Example 2:

Consider a measurement system for measuring the diameter of a Parts. The quality engineer carried out an experiment with 15 parts and 3 measurements per parts. The data referring to this experiment is available in the following table.

Parts Measurement
1 461.28
2 458.17
3 460.57
4 459.28
5 461.28
6 460.25
7 458.82
8 461.58
9 459.36
10 459.62
11 461.38
12 458.67
13 462.57
14 459.58
15 461.76
1 461.50
2 458.62
3 460.28
4 459.66
5 461.12
6 460.68
7 458.95
8 461.10
9 459.52
10 459.34
11 461.57
12 459.03
13 462.28
14 459.66
15 461.12
1 461.20
2 458.61
3 460.32
4 459.58
5 461.18
6 460.28
7 458.66
8 461.18
9 459.57
10 459.54
11 461.53
12 458.98
13 462.32
14 459.28
15 461.15

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Tabela da ANOVA

D.F. Sum of the squares Mean Squares F Statistics P-Value
Parts 14 59.501 4.25001 109.43087 0
Repeatability 30 1.16513 0.03884

CONTRIBUTION TABLE

Variances Contribution (%)
Repeatability 0.039 2.692
Parts 1.404 97.308
Repeatabilitty and reproducibilitty 0.039 2.692
Total 1.443 100.000

TOTAL VARIANACE AND/OR TOLERANCE

Standard Deviation Total Variation (%)
Repeatabilitty 0.197 16.408
Parts 1.185 98.645
Repeatability and reproducibility 0.197 16.408
Total 1.201 100.000

Analysis result
$\qquad \quad$ NDC: 8

Example 3:

Next we consider the tensile resistance characteristic carried out on steel specimens. Five runs of steel were selected, with little variability within runs and the natural variability of the (production) process between runs. Two operators were used with 3 measurements of each run per operator

Runs Operator Resistance
1 1 1168
1 1 1170
1 1 1171
2 1 1179
2 1 1155
2 1 1159
3 1 1161
3 1 1179
3 1 1170
4 1 1190
4 1 1182
4 1 1197
5 1 1135
5 1 1150
5 1 1130
1 2 1142
1 2 1164
1 2 1177
2 2 1173
2 2 1175
2 2 1148
3 2 1184
3 2 1159
3 2 1182
4 2 1190
4 2 1188
4 2 1188
5 2 1139
5 2 1137
5 2 1151

We will upload the data to the system.

Configuring as shown in the figure below to we will carry out the analysis

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are

ANOVA TABLE

D.F Sum of squares Mean Squares F Statistics P-Value
Operators 1 0.033 0.033 0.000 0.995
Piece/Operator 8 7608.667 951.083 7.897 0.000
Repeatability 20 2408.667 120.433

CONTRIBUTION TABLE

Variance Contribution (%)
Repeatability 120.433 30.312
Reproducibility 0.000 0.000
Operators 0.000 0.000
Parts 276.883 69.688
Repeatability and Reproducibility 120.433 30.312
Total 397.317 100.000

TOTAL VARIANCE AND/OR TOLERANCE

Standard Deviation Total Variation (%)
Repeatability 10.974 55.056
Reproducibility 0.000 0.000
Operators 0.000 0.000
Parts 16.640 83.480
Repeatability and reproducibility 10.974 55.056
Total 19.933 100.000
Analysis result
$\qquad$NDC: 2

Last modified 19.11.2025: Atualizar Manual (288ad71)