5. Histogram
Histogram is a graphical representation (a vertical bar graph) the frequency distribution of a set of quantitative data continuous.
Example:
In an auto parts factory, a sealing washer was causing inconvenient when assembling a part of a car. To search information, we decided to measure the thickness of 200 washers, whose values they were:
| Thickness of 200 washers |
|---|
| 8 |
| 10 |
| 12 |
| 12 |
| 11.5 |
| 8 |
| 11.5 |
| 9.5 |
| 9.5 |
| 10.5 |
| 13 |
| 13.5 |
| 11 |
| 14.5 |
| 12 |
| 13 |
| 11 |
| 10.5 |
| 9.5 |
| 11.5 |
| 12.5 |
| 10.5 |
| 10.5 |
| 12.5 |
| 9 |
| 13 |
| 11.5 |
| 14.5 |
| 13.5 |
| 12.5 |
| 10 |
| 10.5 |
| 8 |
| 13 |
| 7 |
| 8 |
| 7 |
| 7 |
| 9.5 |
| 11.5 |
| 12.5 |
| 8 |
| 13.5 |
| 15.5 |
| 9.5 |
| 15 |
| 10 |
| 10 |
| 9 |
| 14.5 |
| 11 |
| 10.5 |
| 11.5 |
| 8.5 |
| 8 |
| 10 |
| 7.5 |
| 10 |
| 12.5 |
| 8 |
| 14 |
| 15 |
| 11.5 |
| 13.5 |
| 11.5 |
| 9.5 |
| 12.5 |
| 5 |
| 8 |
| 13 |
| 8.5 |
| 7.5 |
| 10 |
| 11 |
| 13.5 |
| 9 |
| 15.5 |
| 12.5 |
| 7 |
| 10.5 |
| 13.5 |
| 9 |
| 12 |
| 12.5 |
| 12.5 |
| 12.5 |
| 9 |
| 13.5 |
| 12.5 |
| 12.5 |
| 10.5 |
| 8 |
| 8.5 |
| 13.5 |
| 13 |
| 13 |
| 13 |
| 9.5 |
| 9.5 |
| 14.5 |
| 12 |
| 13 |
| 15.5 |
| 17 |
| 14 |
| 15 |
| 13 |
| 7.5 |
| 12 |
| 12 |
| 7 |
| 12.5 |
| 10.5 |
| 8.5 |
| 6 |
| 15 |
| 15.5 |
| 10 |
| 12 |
| 8.5 |
| 14 |
| 11 |
| 14 |
| 8 |
| 11.5 |
| 13.5 |
| 11.5 |
| 11 |
| 9.5 |
| 13 |
| 10 |
| 10.5 |
| 12 |
| 11 |
| 10 |
| 10 |
| 11.5 |
| 10 |
| 10 |
| 10 |
| 12 |
| 10 |
| 7.5 |
| 11 |
| 13 |
| 12 |
| 16 |
| 9 |
| 10 |
| 8.5 |
| 12 |
| 14.5 |
| 10.5 |
| 11 |
| 10 |
| 13.5 |
| 10.5 |
| 12 |
| 10 |
| 12.5 |
| 10 |
| 14 |
| 11.5 |
| 11.5 |
| 13 |
| 11 |
| 10.5 |
| 10.5 |
| 7.5 |
| 10.5 |
| 12 |
| 12 |
| 11 |
| 10 |
| 12 |
| 11.5 |
| 9.5 |
| 8.5 |
| 8.5 |
| 12.5 |
| 14.5 |
| 11 |
| 11 |
| 17 |
| 15 |
| 11 |
| 9 |
| 14 |
| 10.5 |
| 10.5 |
| 10.5 |
| 8 |
| 10.5 |
| 12.5 |
| 14.5 |
| 7.5 |
| 9.5 |
| 10 |
| 12 |
| 11 |
We will upload the system data.

We will make the Histogram.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:
Frequency Table
| Class | Frequency | Rel. Freq. | Perc. Freq. | Cum. Freq. | Density | Median Point |
|---|---|---|---|---|---|---|
| [5; 6.2) | 2 | 0.01 | 1.0 | 1.0 | 0.008 | 5.6 |
| [6.2; 7.4) | 5 | 0.02 | 2.5 | 3.5 | 0.021 | 6.8 |
| [7.4; 8.6) | 25 | 0.12 | 12.5 | 16.0 | 0.104 | 8.0 |
| [8.6; 9.8) | 18 | 0.09 | 9.0 | 25.0 | 0.075 | 9.2 |
| [9.8; 11) | 40 | 0.20 | 20.0 | 45.0 | 0.167 | 10.4 |
| [11; 12,2) | 46 | 0.23 | 23.0 | 68.0 | 0.192 | 11.6 |
| [12.2; 13.4) | 29 | 0.14 | 14.5 | 82.5 | 0.121 | 12.8 |
| [13.4; 14.6) | 23 | 0.12 | 11.5 | 94.0 | 0.096 | 14.0 |
| [14.6; 15.8) | 9 | 0.04 | 4.5 | 98.5 | 0.038 | 15.2 |
| [15.8; 17) | 3 | 0.02 | 1.5 | 100.0 | 0.012 | 16.4 |
Descriptive Summary
| Values | |
|---|---|
| Minimum | 5.000 |
| 1° Quartile | 9.625 |
| Median | 11.000 |
| Mean | 11.152 |
| 3° Quartile | 12.500 |
| Maximum | 17.000 |
| Standard Deviation | 2.249 |

From the histogram we see that the washer thicknesses follow, approximately, a normal distribution, with the measures concentrated close to the mean (between 9 and 11 mm).