1. Simple Linear Model
The simple linear model is used to analyze the relationship between two or more variables.
Example:
In heat treatment problems, you want to establish a relationship between the temperature of the oven and a quality characteristic (hardness) of a part.
| Hardness | Temperature |
|---|---|
| 137 | 220 |
| 137 | 220 |
| 137 | 220 |
| 136 | 220 |
| 135 | 220 |
| 135 | 225 |
| 133 | 225 |
| 132 | 225 |
| 133 | 225 |
| 133 | 225 |
| 128 | 230 |
| 124 | 230 |
| 126 | 230 |
| 129 | 230 |
| 126 | 230 |
| 122 | 235 |
| 122 | 235 |
| 122 | 235 |
| 119 | 235 |
| 122 | 235 |
We will upload the data to the system.

Configuring according to the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are
ANOVA Table
| D.F. | Sum of Squares | Mean Squares | F.Stat. | P-Value | |
|---|---|---|---|---|---|
| Temperature | 1 | 665.64 | 665.640000 | 291.0962 | 0 |
| Residuals | 18 | 41.16 | 2.286667 |
Exploratory Analysis (residues)
| Minimum | 1Q | Median | Mean | 3Q | Maximum |
|---|---|---|---|---|---|
| -2.82 | -0.82 | 0.18 | 0 | 1.02 | 3.02 |
Coefficients
| Estimate | Standard Deviation | T Stat. | P-Value | |
|---|---|---|---|---|
| Intercept | 364.180 | 13.76492644 | 26.45710 | 0 |
| Temperature | -1.032 | 0.06048691 | -17.06154 | 0 |
Descriptive measure for Goodness-of-Fit
| Standard Deviation of residuals | Degrees of Freedom | $R^2$ | Adjusted $R^2$ |
|---|---|---|---|
| 1.512173 | 18 | 0.9417657 | 0.9385305 |
–
Confidence Interval for the parameters
| 2.5 % | 97.5 % | |
|---|---|---|
| Intercept | 335.260963 | 393.0990373 |
| Temperature | -1.159078 | -0.9049217 |
Prediction Interval
| Hardness | Temperature | Fitted Value | Lower Limit | Upper Limit | Standard Deviation | |
|---|---|---|---|---|---|---|
| 1 | 137 | 220 | 137.14 | 135.9513 | 138.3287 | 0.5658033 |
| 2 | 137 | 220 | 137.14 | 135.9513 | 138.3287 | 0.5658033 |
| 3 | 137 | 220 | 137.14 | 135.9513 | 138.3287 | 0.5658033 |
| 4 | 136 | 220 | 137.14 | 135.9513 | 138.3287 | 0.5658033 |
| 5 | 135 | 220 | 137.14 | 135.9513 | 138.3287 | 0.5658033 |
| 6 | 135 | 225 | 131.98 | 131.2018 | 132.7582 | 0.3704052 |
| 7 | 133 | 225 | 131.98 | 131.2018 | 132.7582 | 0.3704052 |
| 8 | 132 | 225 | 131.98 | 131.2018 | 132.7582 | 0.3704052 |
| 9 | 133 | 225 | 131.98 | 131.2018 | 132.7582 | 0.3704052 |
| 10 | 133 | 225 | 131.98 | 131.2018 | 132.7582 | 0.3704052 |
| 11 | 128 | 230 | 126.82 | 126.0418 | 127.5982 | 0.3704052 |
| 12 | 124 | 230 | 126.82 | 126.0418 | 127.5982 | 0.3704052 |
| 13 | 126 | 230 | 126.82 | 126.0418 | 127.5982 | 0.3704052 |
| 14 | 129 | 230 | 126.82 | 126.0418 | 127.5982 | 0.3704052 |
| 15 | 126 | 230 | 126.82 | 126.0418 | 127.5982 | 0.3704052 |
| 16 | 122 | 235 | 121.66 | 120.4713 | 122.8487 | 0.5658033 |
| 17 | 122 | 235 | 121.66 | 120.4713 | 122.8487 | 0.5658033 |
| 18 | 122 | 235 | 121.66 | 120.4713 | 122.8487 | 0.5658033 |
| 19 | 119 | 235 | 121.66 | 120.4713 | 122.8487 | 0.5658033 |
| 20 | 122 | 235 | 121.66 | 120.4713 | 122.8487 | 0.5658033 |
Forecast Interval
| Temperature | Fitted Value | Lower Limit | Upper Limit | Standard Deviation |
|---|---|---|---|---|
| 220 | 137.14 | 133.7479 | 140.5321 | 1.512173 |
| 220 | 137.14 | 133.7479 | 140.5321 | 1.512173 |
| 220 | 137.14 | 133.7479 | 140.5321 | 1.512173 |
| 220 | 137.14 | 133.7479 | 140.5321 | 1.512173 |
| 220 | 137.14 | 133.7479 | 140.5321 | 1.512173 |
| 225 | 131.98 | 128.7091 | 135.2509 | 1.512173 |
| 225 | 131.98 | 128.7091 | 135.2509 | 1.512173 |
| 225 | 131.98 | 128.7091 | 135.2509 | 1.512173 |
| 225 | 131.98 | 128.7091 | 135.2509 | 1.512173 |
| 225 | 131.98 | 128.7091 | 135.2509 | 1.512173 |
| 230 | 126.82 | 123.5491 | 130.0909 | 1.512173 |
| 230 | 126.82 | 123.5491 | 130.0909 | 1.512173 |
| 230 | 126.82 | 123.5491 | 130.0909 | 1.512173 |
| 230 | 126.82 | 123.5491 | 130.0909 | 1.512173 |
| 230 | 126.82 | 123.5491 | 130.0909 | 1.512173 |
| 235 | 121.66 | 118.2679 | 125.0521 | 1.512173 |
| 235 | 121.66 | 118.2679 | 125.0521 | 1.512173 |
| 235 | 121.66 | 118.2679 | 125.0521 | 1.512173 |
| 235 | 121.66 | 118.2679 | 125.0521 | 1.512173 |
| 235 | 121.66 | 118.2679 | 125.0521 | 1.512173 |

Summary of Residual Analysis
| N.Obs | Hardness | Temperature | Residuals | Studentized Residuals | Standardized Residuals | Leverage | DFFITS | DFBETA |
|---|---|---|---|---|---|---|---|---|
| 1 | 137 | 220 | -0.14 | -0.09704784 | -0.09983375 | 0.14 | -0.039156210 | 0.031394812 |
| 2 | 137 | 220 | -0.14 | -0.09704784 | -0.09983375 | 0.14 | -0.039156210 | 0.031394812 |
| 3 | 137 | 220 | -0.14 | -0.09704784 | -0.09983375 | 0.14 | -0.039156210 | 0.031394812 |
| 4 | 136 | 220 | -1.14 | -0.80494250 | -0.81293195 | 0.14 | -0.324772801 | 0.260397546 |
| 5 | 135 | 220 | -2.14 | -1.58941025 | -1.52603016 | 0.14 | -0.641284585 | 0.514171544 |
| 6 | 135 | 225 | 3.02 | 2.28984318 | 2.05987841 | 0.06 | 0.578518751 | -0.236179291 |
| 7 | 133 | 225 | 1.02 | 0.68539691 | 0.69572052 | 0.06 | 0.173162497 | -0.070693294 |
| 8 | 132 | 225 | 0.02 | 0.01325730 | 0.01364158 | 0.06 | 0.003349398 | -0.001367386 |
| 9 | 133 | 225 | 1.02 | 0.68539691 | 0.69572052 | 0.06 | 0.173162497 | -0.070693294 |
| 10 | 133 | 225 | 1.02 | 0.68539691 | 0.69572052 | 0.06 | 0.173162497 | -0.070693294 |
| 11 | 128 | 230 | 1.18 | 0.79664291 | 0.80485315 | 0.06 | 0.201268307 | 0.082167442 |
| 12 | 124 | 230 | -2.82 | -2.09718028 | -1.92346262 | 0.06 | -0.529843321 | -0.216307630 |
| 13 | 126 | 230 | -0.82 | -0.54833211 | -0.55930473 | 0.06 | -0.138533682 | -0.056556139 |
| 14 | 129 | 230 | 2.18 | 1.54290019 | 1.48693210 | 0.06 | 0.389806907 | 0.159138003 |
| 15 | 126 | 230 | -0.82 | -0.54833211 | -0.55930473 | 0.06 | -0.138533682 | -0.056556139 |
| 16 | 122 | 235 | 0.34 | 0.23600803 | 0.24245339 | 0.14 | 0.095222937 | 0.076348201 |
| 17 | 122 | 235 | 0.34 | 0.23600803 | 0.24245339 | 0.14 | 0.095222937 | 0.076348201 |
| 18 | 122 | 235 | 0.34 | 0.23600803 | 0.24245339 | 0.14 | 0.095222937 | 0.076348201 |
| 19 | 119 | 235 | -2.66 | -2.06083935 | -1.89684123 | 0.14 | -0.831493637 | -0.666678066 |
| 20 | 122 | 235 | 0.34 | 0.23600803 | 0.24245339 | 0.14 | 0.095222937 | 0.076348201 |
Criterion
| Diagnostic | Formula | Value |
|---|---|---|
| hii (Leverage) | (2*(p+1))/n | 0.20 |
| DFFITS | 2* raíz ((p+1)/n) | 0.63 |
| DCOOK | 4/n | 0.20 |
| DFBETA | 2/raíz(n) | 0.45 |
| Standardized Resíduals | (-3,3) | 3.00 |
| Studentized Residuals | (-3,3) | 3.00 |

Normality Test
| Statistics | P-value | |
|---|---|---|
| Anderson-Darling | 0.4053853 | 0.3202935 |
| Shapiro-Wilk | 0.9594731 | 0.5333777 |
| Kolmogorov-Smirnov | 0.1621102 | 0.1827284 |
| Ryan-Joiner | 0.9785600 | 0.4164000 |

Homoscedasticity Test - Cochran
| Statistics | Number of Replicas | P-Value |
|---|---|---|
| 0.5 | 5 | 0.25 |
Homoscedasticity Test (Brown-Forsythe)
| Variable | Statistics | DF.Num. | DF.Den. | P-value |
|---|---|---|---|---|
| Grupo | 0.6153846 | 3 | 16 | 0.6149536 |
Homoscedasticity Test - Breusch Pagan
| Statistics | DF | P-value |
|---|---|---|
| 0.07844525 | 1 | 0.7794155 |
Homoscedasticity test - Goldfeld Quandt
| Variable | Statistics | DF1 | DF2 | P-value |
|---|---|---|---|---|
| Temperature | 1.67796610169501 | 6 | 6 | 0.545208843765449 |
*Independence Test - Durbin-Watson
| Statistics | P-value |
|---|---|
| 2.235102 | 0.7686383 |

Lack of Fit Test
| DF | Sum of Squares | Mean Squares | F. Stat. | P-value | |
|---|---|---|---|---|---|
| Temperature | 1 | 665.64 | 665.640000 | 350.336842 | 0. |
| Residuals | 18 | 41.16 | 2.286667 | ||
| Lack of Fit | 2 | 10.76 | 5.380000 | 2.831579 | 0.088549423924260837 |
| Pure Error | 16 | 30.40 | 1.900000 |






Influential Points
| Observations | DFFITS | Criterion |
|---|---|---|
| 5 | -0.64 | ± 0.63 |
| 19 | -0.83 | ± 0.63 |



Influential Points
| Observations | DCOOK | Criterion |
|---|---|---|
| 19 | 0.2929 | 0.2 |
Temperature
| Observations | DFBETA | Criterion |
|---|---|---|
| 5 | 0.5142 | 0.4472 |
| 19 | -0.6667 | 0.4472 |

Last modified 19.11.2025: Atualizar Manual (288ad71)