1. Simple Linear Model

The simple linear model is used to analyze the relationship between two or more variables.

Example:

In heat treatment problems, you want to establish a relationship between the temperature of the oven and a quality characteristic (hardness) of a part.


Hardness Temperature
137 220
137 220
137 220
136 220
135 220
135 225
133 225
132 225
133 225
133 225
128 230
124 230
126 230
129 230
126 230
122 235
122 235
122 235
119 235
122 235

We will upload the data to the system.

Configuring according to the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are

ANOVA Table

D.F. Sum of Squares Mean Squares F.Stat. P-Value
Temperature 1 665.64 665.640000 291.0962 0
Residuals 18 41.16 2.286667

Exploratory Analysis (residues)

Minimum 1Q Median Mean 3Q Maximum
-2.82 -0.82 0.18 0 1.02 3.02

Coefficients

Estimate Standard Deviation T Stat. P-Value
Intercept 364.180 13.76492644 26.45710 0
Temperature -1.032 0.06048691 -17.06154 0

Descriptive measure for Goodness-of-Fit

Standard Deviation of residuals Degrees of Freedom $R^2$ Adjusted $R^2$
1.512173 18 0.9417657 0.9385305

Confidence Interval for the parameters

2.5 % 97.5 %
Intercept 335.260963 393.0990373
Temperature -1.159078 -0.9049217

Prediction Interval

Hardness Temperature Fitted Value Lower Limit Upper Limit Standard Deviation
1 137 220 137.14 135.9513 138.3287 0.5658033
2 137 220 137.14 135.9513 138.3287 0.5658033
3 137 220 137.14 135.9513 138.3287 0.5658033
4 136 220 137.14 135.9513 138.3287 0.5658033
5 135 220 137.14 135.9513 138.3287 0.5658033
6 135 225 131.98 131.2018 132.7582 0.3704052
7 133 225 131.98 131.2018 132.7582 0.3704052
8 132 225 131.98 131.2018 132.7582 0.3704052
9 133 225 131.98 131.2018 132.7582 0.3704052
10 133 225 131.98 131.2018 132.7582 0.3704052
11 128 230 126.82 126.0418 127.5982 0.3704052
12 124 230 126.82 126.0418 127.5982 0.3704052
13 126 230 126.82 126.0418 127.5982 0.3704052
14 129 230 126.82 126.0418 127.5982 0.3704052
15 126 230 126.82 126.0418 127.5982 0.3704052
16 122 235 121.66 120.4713 122.8487 0.5658033
17 122 235 121.66 120.4713 122.8487 0.5658033
18 122 235 121.66 120.4713 122.8487 0.5658033
19 119 235 121.66 120.4713 122.8487 0.5658033
20 122 235 121.66 120.4713 122.8487 0.5658033

Forecast Interval

Temperature Fitted Value Lower Limit Upper Limit Standard Deviation
220 137.14 133.7479 140.5321 1.512173
220 137.14 133.7479 140.5321 1.512173
220 137.14 133.7479 140.5321 1.512173
220 137.14 133.7479 140.5321 1.512173
220 137.14 133.7479 140.5321 1.512173
225 131.98 128.7091 135.2509 1.512173
225 131.98 128.7091 135.2509 1.512173
225 131.98 128.7091 135.2509 1.512173
225 131.98 128.7091 135.2509 1.512173
225 131.98 128.7091 135.2509 1.512173
230 126.82 123.5491 130.0909 1.512173
230 126.82 123.5491 130.0909 1.512173
230 126.82 123.5491 130.0909 1.512173
230 126.82 123.5491 130.0909 1.512173
230 126.82 123.5491 130.0909 1.512173
235 121.66 118.2679 125.0521 1.512173
235 121.66 118.2679 125.0521 1.512173
235 121.66 118.2679 125.0521 1.512173
235 121.66 118.2679 125.0521 1.512173
235 121.66 118.2679 125.0521 1.512173

Summary of Residual Analysis

N.Obs Hardness Temperature Residuals Studentized Residuals Standardized Residuals Leverage DFFITS DFBETA
1 137 220 -0.14 -0.09704784 -0.09983375 0.14 -0.039156210 0.031394812
2 137 220 -0.14 -0.09704784 -0.09983375 0.14 -0.039156210 0.031394812
3 137 220 -0.14 -0.09704784 -0.09983375 0.14 -0.039156210 0.031394812
4 136 220 -1.14 -0.80494250 -0.81293195 0.14 -0.324772801 0.260397546
5 135 220 -2.14 -1.58941025 -1.52603016 0.14 -0.641284585 0.514171544
6 135 225 3.02 2.28984318 2.05987841 0.06 0.578518751 -0.236179291
7 133 225 1.02 0.68539691 0.69572052 0.06 0.173162497 -0.070693294
8 132 225 0.02 0.01325730 0.01364158 0.06 0.003349398 -0.001367386
9 133 225 1.02 0.68539691 0.69572052 0.06 0.173162497 -0.070693294
10 133 225 1.02 0.68539691 0.69572052 0.06 0.173162497 -0.070693294
11 128 230 1.18 0.79664291 0.80485315 0.06 0.201268307 0.082167442
12 124 230 -2.82 -2.09718028 -1.92346262 0.06 -0.529843321 -0.216307630
13 126 230 -0.82 -0.54833211 -0.55930473 0.06 -0.138533682 -0.056556139
14 129 230 2.18 1.54290019 1.48693210 0.06 0.389806907 0.159138003
15 126 230 -0.82 -0.54833211 -0.55930473 0.06 -0.138533682 -0.056556139
16 122 235 0.34 0.23600803 0.24245339 0.14 0.095222937 0.076348201
17 122 235 0.34 0.23600803 0.24245339 0.14 0.095222937 0.076348201
18 122 235 0.34 0.23600803 0.24245339 0.14 0.095222937 0.076348201
19 119 235 -2.66 -2.06083935 -1.89684123 0.14 -0.831493637 -0.666678066
20 122 235 0.34 0.23600803 0.24245339 0.14 0.095222937 0.076348201

Criterion

Diagnostic Formula Value
hii (Leverage) (2*(p+1))/n 0.20
DFFITS 2* raíz ((p+1)/n) 0.63
DCOOK 4/n 0.20
DFBETA 2/raíz(n) 0.45
Standardized Resíduals (-3,3) 3.00
Studentized Residuals (-3,3) 3.00

Normality Test

Statistics P-value
Anderson-Darling 0.4053853 0.3202935
Shapiro-Wilk 0.9594731 0.5333777
Kolmogorov-Smirnov 0.1621102 0.1827284
Ryan-Joiner 0.9785600 0.4164000

Homoscedasticity Test - Cochran

Statistics Number of Replicas P-Value
0.5 5 0.25

Homoscedasticity Test (Brown-Forsythe)

Variable Statistics DF.Num. DF.Den. P-value
Grupo 0.6153846 3 16 0.6149536

Homoscedasticity Test - Breusch Pagan

Statistics DF P-value
0.07844525 1 0.7794155

Homoscedasticity test - Goldfeld Quandt

Variable Statistics DF1 DF2 P-value
Temperature 1.67796610169501 6 6 0.545208843765449

*Independence Test - Durbin-Watson

Statistics P-value
2.235102 0.7686383

Lack of Fit Test

DF Sum of Squares Mean Squares F. Stat. P-value
Temperature 1 665.64 665.640000 350.336842 0.
Residuals 18 41.16 2.286667
Lack of Fit 2 10.76 5.380000 2.831579 0.088549423924260837
Pure Error 16 30.40 1.900000

Influential Points

Observations DFFITS Criterion
5 -0.64 ± 0.63
19 -0.83 ± 0.63

Influential Points

Observations DCOOK Criterion
19 0.2929 0.2

Temperature

Observations DFBETA Criterion
5 0.5142 0.4472
19 -0.6667 0.4472

Last modified 19.11.2025: Atualizar Manual (288ad71)