3. Binomial Model

The binomial regression model is used when the response variable is variable with two possible outcomes.

Example 1:

An analyst is studying the effect of length of experience in computer programming on the ability to complete a difficult task within a given time. Twenty-five programmers were selected for the study. The predictor variable, X, corresponds to months of experience.

Observation:

Tasks (Y)=1, whether the task was successfully completed in the time allowed, and

Tasks (Y)=0, if the task was not completed successfully.

MonthsExperience Tasks
14 0
29 0
6 0
25 1
18 1
4 0
18 0
12 0
22 1
6 0
30 1
11 0
30 1
5 0
20 1
13 0
9 0
32 1
24 0
13 1
19 0
4 0
28 1
22 1
8 1

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Estimated Coefficients Table

Estimate Standard Deviation Wald Test P-Value Lower Limit Upper Limit
Intercept -3.0596959 1.25934986 -2.429584 0.0151 -5.52797622 -0.5914155
MonthsExperirnce 0.1614859 0.06498001 2.485163 0.0129 0.03412744 0.2888444

Covariance Matrix

(Intercept) MonthsExperience
(Intercept) 1.5859621 -0.075402604
MonthsExperience -0.0754026 0.004222402

General Information

Information Value
Fisher Scoring Interation 4
Null Deviance 34.296 with 24 Degrees the Freedom
Residual Deviance 25.425 with 23 Degrees the Freedom
AIC 29.4245740804509
Dispersion Parameter 1

Resultado da análise

Real V2
Predito Tasks=0 Tasks=1
Tasks=0 13 6
Tasks=1 1 5

Summary (Performance)

Percentage (%)
Sensitivity 45.45455
Specificity 92.85714
PPV 83.33333
NPV 68.42105
Accuracy 72.00000

Odds-Ratio Table

Variable Category Odds Ratio Lower Limit Upper Limit
MonthsExperience 1.1752559100685 1.03471646443219 1.3348840012021

Intervalo de Previsão

MonthsExperience Adjusted Probability LL UL Standard Deviation
1 14 0.31026237 0.079658965 0.5408658 0.11765696
2 29 0.83526292 0.599589805 1.0709360 0.12024360
3 6 0.10999616 -0.065139980 0.2851323 0.08935681
4 25 0.72660237 0.464020009 0.9891847 0.13397306
5 18 0.46183704 0.223425450 0.7002486 0.12164080
6 4 0.08213002 -0.069291566 0.2335516 0.07725733
7 12 0.24566554 0.020497984 0.4708331 0.11488352
8 22 0.62081158 0.363141740 0.8784814 0.13146662
9 30 0.85629862 0.632385431 1.0802118 0.11424352
10 11 0.21698039 -0.003406564 0.4373674 0.11244439
11 5 0.09515416 -0.068239496 0.2585478 0.08336564
12 20 0.54240353 0.294917361 0.7898897 0.12627078
13 13 0.27680234 0.048333968 0.5052707 0.11656764
14 9 0.16709980 -0.038978483 0.3731781 0.10514391
15 32 0.89166416 0.694547616 1.0887807 0.10057152
16 24 0.69337941 0.430252386 0.9565064 0.13425095
17 19 0.50213414 0.259630105 0.7446382 0.12372882
18 28 0.81182461 0.566052911 1.0575963 0.12539603
19 8 0.14581508 -0.050963101 0.3425933 0.10039887

Prediction Interval

MonthsExperieence Adjusted Probability LL UL Stadard Deviation
1 14 0.31026237 0.079658965 0.5408658 0.11765696
2 29 0.83526292 0.599589805 1.0709360 0.12024360
3 6 0.10999616 -0.065139980 0.2851323 0.08935681
4 25 0.72660237 0.464020009 0.9891847 0.13397306
5 18 0.46183704 0.223425450 0.7002486 0.12164080
6 4 0.08213002 -0.069291566 0.2335516 0.07725733
7 18 0.46183704 0.223425450 0.7002486 0.12164080
8 12 0.24566554 0.020497984 0.4708331 0.11488352
9 22 0.62081158 0.363141740 0.8784814 0.13146662
10 6 0.10999616 -0.065139980 0.2851323 0.08935681
11 30 0.85629862 0.632385431 1.0802118 0.11424352
12 11 0.21698039 -0.003406564 0.4373674 0.11244439
13 30 0.85629862 0.632385431 1.0802118 0.11424352
14 5 0.09515416 -0.068239496 0.2585478 0.08336564
15 20 0.54240353 0.294917361 0.7898897 0.12627078
16 13 0.27680234 0.048333968 0.5052707 0.11656764
17 9 0.16709980 -0.038978483 0.3731781 0.10514391
18 32 0.89166416 0.694547616 1.0887807 0.10057152
19 24 0.69337941 0.430252386 0.9565064 0.13425095
20 13 0.27680234 0.048333968 0.5052707 0.11656764
21 19 0.50213414 0.259630105 0.7446382 0.12372882
22 4 0.08213002 -0.069291566 0.2335516 0.07725733
23 28 0.81182461 0.566052911 1.0575963 0.12539603
24 22 0.62081158 0.363141740 0.8784814 0.13146662
25 8 0.14581508 -0.050963101 0.3425933 0.10039887

Likelihood-Ratio Test (LRT)

Tested Variables Test Statisti Degrees of Freedom P-Value
MonthsExperience 8.871916 1 0.002895911

Hormer and Lemeshow Test

Test Statistic Degrees of Freedom P-Value Number of groups
tabHosmer 0.8636609 1 0.3527162 3
X 0.1032996 2 0.9496614 4
X.1 2.1663561 3 0.5386055 5
X.2 1.6652041 4 0.7970282 6
X.3 3.4095112 5 0.6371218 7
X.4 3.1422227 6 0.7907964 8
X.5 6.4255004 7 0.4910340 9
X.6 6.5599688 8 0.5847638 10

Residual Table

Deviance Residual Pearson Residual Leverage Cook’s Distance
1 -0.8912168 -0.6934965 0.06468785 0.016631244
2 -2.0075616 -2.3802536 0.10507761 0.332614571
3 -0.5037418 -0.3668326 0.08156202 0.005975083
4 0.8379723 0.6431504 0.09035322 0.020543100
5 1.2817536 1.1131167 0.05953276 0.039216040
6 -0.4314357 -0.3117255 0.07917694 0.004177699
7 -1.1478806 -0.9552469 0.05953276 0.028881095
8 -0.7791504 -0.5921530 0.07122100 0.013444157
9 1.0143989 0.8119069 0.07342029 0.026116551
10 -0.5037418 -0.3668326 0.08156202 0.005975083
11 0.5891404 0.4332766 0.10606643 0.011137127
12 -0.7269990 -0.5471630 0.07441893 0.012035729
13 0.5891404 0.4332766 0.10606643 0.011137127
14 -0.4664129 -0.3382224 0.08071868 0.005022274
15 1.1434517 0.9495059 0.06423926 0.030945750
16 -0.8338729 -0.6407963 0.06787813 0.014950895
17 -0.6302671 -0.4668354 0.07943296 0.009402490
18 0.5061151 0.3683859 0.10470752 0.007935766
19 -1.6072596 -1.5718845 0.08477399 0.114431488
20 1.6601125 1.6741998 0.06787813 0.102056745
21 -1.2189489 -1.0365150 0.06123640 0.035040847
22 -0.4314357 -0.3117255 0.07917694 0.004177699
23 0.6817493 0.5083200 0.10293029 0.014823864
24 1.0143989 0.8119069 0.07342029 0.026116551
25 2.0469291 2.5246445 0.08092914 0.280625042

Last modified 19.11.2025: Atualizar Manual (288ad71)