1. Model Selection: Linear Model

The selection of a linear model can be evaluated by several factors that indicate the best model.

Example 1:

The gain of a transistor is the difference between the emitter and collector. The variable Gain (in hFE) can be controlled in the ion deposition process by means of the variables Emission time (in minutes) and Ion dose ( X $10^{14}$).

The aim is to evaluate the linear relationship between the transistor gain and the covariates emission time and ion dose.

The data can be found in Table.

Observation Time Dose Gain
1 195 4 1004
2 255 4 1636
3 195 4.6 852
4 255 4.6 1506
5 225 4.2 1272
6 225 4.1 1270
7 225 4.6 1269
8 195 4.3 903
9 255 4.3 1555
10 225 4 1260
11 225 4.7 1146
12 225 4.3 1276
13 225 4.72 1225
14 230 4.3 1321

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Model Selection table

Models (Pasos) DF Deviations(Deviance) GL Residues Deviance Residual AIC Choose
Gain~1 13 665387.21 152.7669
Gain~Time 1 630967.86 12 34419.35 113.3024
Gain~Time+Dose 1 20998.23 11 13421.12 102.1174 Selected model

Model coefficients table

Estimate Standrad Deviation T Stat. P-value
Intercept -520.07668 192.1070916 -2.707223 0.0203918463055154
Time 10.78116 0.4743196 22.729731 0
Dose -152.14887 36.6754390 -4.148522 0.0016204993349917

Exploratory Analysis (residuals)

Minimum 1Q Mean Median 3Q Maximum
-44.584 -26.348 -3.266 0 26.004 63.201

Descriptive measure for Goodness-of-Fit

Standard deviation of residuals Degrees of Freedom R^2 adjusted R^2
34.92995 11 0.9798296 0.9761623

Example 2:

With the same data as Example 1, we will now apply the F-Test as a selection criterion.

The aim is to evaluate the linear relationship between the transistor gain and the covariates emission time and ion dose.

The data can be found in Table.

Observation  Time  Dose  Gain 
195  1004 
255  1636 
195  4.6   852 
255  4.6   1506 
225  4.2   1272 
225  4.1   1270 
225  4.6   1269 
195  4.3   903 
255  4.3   1555 
10  225  1260 
11  225  4.7   1146 
12  225  4.3   1276 
13  225  4.72   1225 
14  230  4.3   1321 

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Model Selection table

Modelo(Steps) Variable In Variable Out Statistic F P-Value
Model 1 Tempo 219.98133 4.421162e-09
Model 2 Dose 17.21024 1.620499e-03
Selected Model Time + Dose

ANOVA Table

D.F. Sum of Squares Mean Squares F Stat. P-value
Time 1 630967.8649 630967.8649 517.1438 0
Dose 1 20998.234 20998.234 17.2102 0.0016
Residuals 11 13421.1153 1220.1014

Example 3:

With the same data as Example 1, instead of automatically selecting the models, the three best ones will be chosen from all possible options.

The aim is to evaluate the linear relationship between the transistor gain and the covariates emission time and ion dose.

The data can be found in Table.

Observation  Time  Dose  Gain 
195  1004 
255  1636 
195  4.6   852 
255  4.6   1506 
225  4.2   1272 
225  4.1   1270 
225  4.6   1269 
195  4.3   903 
255  4.3   1555 
10  225  1260 
11  225  4.7   1146 
12  225  4.3   1276 
13  225  4.72   1225 
14  230  4.3   1321 

We will upload the data to the system.

Configuring as shown in the figure below to perform the analysis.

Then click Calculate to get the results. You can also generate the analyses and download them in Word format.

The results are:

Model Selection table

V1 AIC CP R^2 adjusted R^2 BIC PRESS QME
X2 Time + Dose 143.848 3 0.98 0.976 146.404 22225.01 1220.1014
X1 Time 155.033 18.21 0.948 0.944 156.95 51545.126 2868.2791
X1.1 Dose 196.035 517.641 0.032 -0.048 197.952 875529.652 53647.9287

Last modified 19.11.2025: Atualizar Manual (288ad71)